Role of BKβ1 in Na+ reabsorption by cortical collecting ducts of Na+-deprived mice

Author:

Grimm P. Richard,Irsik Debra L.,Liu Liping,Holtzclaw J. David,Sansom Steven C.

Abstract

On a low-Na+ diet (LNa+), urinary Na+ loss is prevented by aldosterone-induced Na+ reabsorption through epithelial Na+ channels (ENaC) in the connecting tubules (CNT) and cortical collecting ducts (CCD). However, the mechanism whereby K+ loss is minimized and Na+ reabsorption is maximized in the face of a reduced lumen-to-bath Na+ gradient is not fully understood. The large-conductance calcium-activated potassium channel (BK)β1 subunit (gene: Kcnmb1), which has a role in K+ secretion in the CNT, is absent in the CCD in mice on a control diet. We hypothesized that BKα/β1 helps to maximize Na+ reabsorption during Na+ deficiency. With LNa+, the Na+ clearance of Kcnmb1-mutant mice ( Kcnmb1−/−) was 45% greater and the plasma Na+ concentration and osmolality were significantly reduced compared with wild-type mouse (WT) controls. On LNa+, Kcnmb1−/− exhibited exacerbated volume depletion (higher Hct and weight loss) compared with WT. LNa+, which did not affect the mean arterial blood pressure (MAP) of WT, significantly reduced MAP of Kcnmb1−/−. The plasma aldosterone concentration of Kcnmb1−/− on LNa+ was significantly elevated compared with Kcnmb1−/− on a control diet but was not different from WT on LNa+. Immunohistochemical staining revealed that BKα and BKβ1, which were absent in the principal cells (PCs) of the CCD, were localized on the basolateral membrane (BSM) of PCs of WT on LNa+. Moreover, BKα was absent from the BSM of PCs of Na+-deficient Kcnmb1−/−. We conclude that part of the mechanism to maximize Na+ reabsorption during Na+ deficiency is the placement of BKα/β1 channels in the BSM of CCD PCs.

Publisher

American Physiological Society

Subject

Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aldosterone: Renal Action and Physiological Effects;Comprehensive Physiology;2023-03-30

2. Intercalated cell BKα subunit is required for flow-induced K+ secretion;JCI Insight;2020-04-07

3. BK Channels in Epithelia;Studies of Epithelial Transporters and Ion Channels;2020

4. The mechanosensitive BKα/β1 channel localizes to cilia of principal cells in rabbit cortical collecting duct (CCD);American Journal of Physiology-Renal Physiology;2017-01-01

5. Disruption of KCNJ10 (Kir4.1) stimulates the expression of ENaC in the collecting duct;American Journal of Physiology-Renal Physiology;2016-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3