Affiliation:
1. Department of Biomedicine, University of Bergen, Bergen, Norway; and
2. Department of Physiological Sciences, Lund University, Lund, Sweden
Abstract
In peritoneal dialysis (PD) patients, the frequent exposure to “unphysiological” dialysis fluids elicits a chronic state of a low-grade peritoneal inflammation leading to interstitial matrix remodeling and angiogenesis. Proinflammatory cytokines are important regulators involved in this inflammatory process that ultimately leads to dysfunction of the peritoneum as a dialysis membrane. We aimed to measure the local concentrations of proinflammatory cytokines in the peritoneal interstitial fluid (IF). Furthermore, we wanted to assess how the driving forces for fluid and solute exchanges are affected in a remodeled interstitial matrix and thus measured the colloid osmotic pressure (COP) gradient in rats that were exposed to chronic PD. After 8 wk of peritoneal dialysis, IF from peritoneum was isolated using a centrifugation method, and was analyzed for cytokine content and COP along with plasma. For several of the proinflammatory cytokines there were gradients from IF to plasma, showing local production. For some cytokines, the concentration in IF was increased severalfold, whereas IL-18 was increased systemically due to PD. Furthermore, the presence of the catheter per se seemed to increase cytokine levels. COP in IF was significantly decreased in the PD group, while collagen and hyaluronan content was increased. Collectively, our data suggest that the increased levels of proinflammatory cytokines after PD may be an integral component of the development of fibrosis and angiogenesis commonly seen in PD patients, and the decreased COP in IF after chronic PD may shift the Starling equilibrium across peritoneal capillaries to an absorptive state.
Publisher
American Physiological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献