An acute rise of plasma Na+ concentration associates with syndecan-1 shedding during hemodialysis

Author:

Koch Josephine1,Idzerda Nienke M. A.1,Ettema Esmée M.1,Kuipers Johanna1,Dam Wendy1,van den Born Jacob1,Franssen Casper F. M.1

Affiliation:

1. Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

Endothelial dysfunction (ED) contributes to the high incidence of cardiovascular events in patients undergoing hemodialysis. Syndecan-1 in the endothelial glycocalyx can be shed into the circulation, serving as a biomarker for ED. As Na+ is a trigger for glycocalyx shedding, we now tested whether hemodialysis, with higher dialysate Na+ concentrations, is associated with more syndecan-1 shedding compared with standard hemodialysis (SHD). In this crossover study in 29 patients, plasma syndecan-1 was repeatedly measured during SHD and during Hemocontrol hemodialysis (HHD), which is characterized by initially higher dialysate and plasma Na+ levels. Courses of syndecan-1 were compared with linear mixed models. Syndecan-1 shedding was assessed by area under the curve analysis. Plasma Na+ increased early after the start of SHD and HHD, with higher values during HHD (30 min: 142.3 vs. 139.9 mM, P < 0.001). Syndecan-1 increased significantly during both conditions, but the percent change was higher (42.9% vs. 19.5%) and occurred earlier (120 vs. 180 min) during HHD. Syndecan-1 levels were significantly higher at 120 min during HHD compared with SHD ( P < 0.05). Overall, syndecan-1 shedding was higher during HHD compared with SHD (means: 40.4 vs. 19.0 arbitrary units, P = 0.06). Lower predialysis plasma Na+ and osmolality were associated with greater intradialytic increases in syndecan-1 levels (both groups, P = 0.001). The rise in plasma syndecan-1 levels was more pronounced and occurred earlier during hemodialysis with higher plasma Na+ levels. Although we cannot prove that the rise in plasma syndecan-1 originates from the endothelial glycocalyx, our findings are compatible with Na+-driven endothelial glycocalyx-derived syndecan-1 shedding.

Publisher

American Physiological Society

Subject

Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3