Developmental changes in rabbit proximal straight tubule paracellular permeability

Author:

Quigley Raymond1,Baum Michel12

Affiliation:

1. Departments of Pediatrics and

2. Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9063

Abstract

The early proximal tubule preferentially reabsorbs organic solutes and bicarbonate over chloride ions, resulting in a luminal fluid with a higher chloride concentration than that in blood. From this late proximal tubular fluid, one-half of NaCl reabsorption by the adult proximal tubule is active and transcellular and one-half is passive and paracellular. The purpose of the present in vitro microperfusion study was to determine the characteristics of passive chloride transport and permeability properties of the adult and neonatal proximal straight tubules (PST). In tubules perfused with a late proximal tubular fluid, net passive chloride flux was 131.7 ± 37.7 pmol · mm−1 · min−1in adult tubules and −17.1 ± 23.3 pmol · mm−1 · min−1 in neonatal proximal tubules ( P < 0.01). Chloride permeability was 10.94 ± 5.21 × 10−5 cm/s in adult proximal tubules and −1.26 ± 1.84 × 10−5 cm/s in neonatal proximal tubules ( P< 0.05). Thus neonatal PST have a chloride permeability not different from zero and have no net passive chloride transport. Bicarbonate permeability is also less in neonates than adults in this segment (−0.07 ± 0.03 × 10−5 vs. 0.93 ± 0.27 × 10−5 cm/s, P < 0.01). Neonatal PST have higher sodium-to chloride and bicarbonate-to-chloride permeability ratios than adult PST. However, mannitol and sucrose permeabilities were not different in adult proximal tubules and neonatal PST. Transepithelial resistance was measured using current injection and cable analysis. The resistance was 6.7 ± 0.7 Ω · cm2 in adult tubules and 11.3 ± 1.4 Ω · cm2 in neonatal PST ( P < 0.01). In conclusion, there are significant maturational changes in the characteristics of the PST paracellular pathway affecting transport in this nephron segment.

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postnatal Renal Maturation;Pediatric Nephrology;2022

2. Postnatal Renal Maturation;Pediatric Nephrology;2021

3. Congenital Urinary Tract Obstruction—Diagnosis and Management in the Fetus;Nephrology and Fluid/electrolyte Physiology;2019

4. Functional Development of the Kidney in Utero;Fetal and Neonatal Physiology;2017

5. Renal Transport of Sodium During Development;Fetal and Neonatal Physiology;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3