Inhibition of erythrocyte phosphatidylserine exposure by urea and Cl−

Author:

Lang Karl S.,Myssina Swetlana,Lang Philipp A.,Tanneur Valerie,Kempe Daniela S.,Mack Andreas F.,Huber Stephan M.,Wieder Thomas,Lang Florian,Duranton Christophe

Abstract

Osmotic shock by addition of sucrose to the medium stimulates erythrocyte sphingomyelinase with subsequent ceramide formation and triggers Ca2+entry through stimulation of cation channels. Both ceramide and Ca2+activate an erythrocyte scramblase, leading to breakdown of phosphatidylserine asymmetry, a typical feature of apoptosis. Because erythrocytes are regularly exposed to osmotic shock during passage of kidney medulla, the present study explored the influence of NaCl and urea on erythrocyte phosphatidylserine exposure as determined by annexin binding. The percentage of annexin-binding erythrocytes increased from <5 to 80 ± 4% ( n = 4) upon addition of 650 mM sucrose, an effect paralleled by activation of the cation channel and stimulation of ceramide formation. The number of annexin-binding erythrocytes increased only to 18% after addition of 325 mM NaCl and was not increased by addition of 650 mM urea. According to whole cell patch-clamp experiments, the cation conductance was activated by replacement of extracellular Clwith gluconate at isotonic conditions or by addition of hypertonic sucrose or urea. Although stimulating the cation conductance, urea abrogated the annexin binding and concomitant increase of ceramide levels induced by osmotic cell shrinkage. In vitro sphingomyelinase assays demonstrated a direct inhibitory effect of urea on sphingomyelinase activity. Urea did not significantly interfere with annexin binding after addition of ceramide. In conclusion, both Cland urea blunt erythrocyte phosphatidylserine exposure after osmotic shock. Whereas Clis effective through inhibition of the cation conductance, urea exerts its effect through inhibition of sphingomyelinase, thus blunting formation of ceramide.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3