Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+cotransporter

Author:

Layton Anita T.1,Dantzler William H.2,Pannabecker Thomas L.2

Affiliation:

1. Department of Mathematics, Duke University, Durham, North Carolina; and

2. Department of Physiology, College of Medicine, University of Arizona, Tuscon, Arizona

Abstract

We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na+or urea-Clcotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na+or urea- Clcotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data.

Publisher

American Physiological Society

Subject

Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3