Developmental expression and function of aldehyde reductase in proximal tubules of the kidney

Author:

Barski Oleg A.,Papusha Victor Z.,Ivanova Margarita M.,Rudman Dorene M.,Finegold Milton J.

Abstract

Aldehyde reductase reduces a wide variety of toxic and physiological aldehydes with a marked preference for negatively charged substrates such as glucuronate. Reduction of glucuronate to gulonate is a step in inositol catabolism, a process specific to the kidney cortex. Administration of the aldehyde reductase inhibitor AL-1576 to mice increases urinary output of glucuronate and decreases output of vitamin C. Aldehyde reductase mRNA with a 319-bp 5′-untranslated region is expressed ubiquitously in murine tissues. A new isoform with a short 64-bp 5′-untranslated region is found predominantly in the kidney, resulting in 10-fold higher enzymatic activity observed in this organ compared with other tissues. A moderate level of the new transcript is found in liver, intestine, and stomach, whereas brain, heart, lung, spleen, ovary, and testis have low to insignificant levels. The short transcript is absent during embryonic development and is first observed in the murine kidney on postnatal day 6. The abundance of the short transcript and enzyme activity increase sigmoidally with age; the sharpest increase occurs during the third week of life. As shown by immunohistochemistry, aldehyde reductase expression is limited to the proximal tubules and parietal epithelium of Bowman’s capsule. In the mouse, the intensity of staining in tubules increases with age, suggesting that induction of aldehyde reductase expression is part of renal tubular maturation. The human kidney also exhibits proximal tubular localization and the two mRNA transcripts of aldehyde reductase. Immunoreactive protein is present in the 9-wk-old fetal kidney, indicating that the induction of aldehyde reductase in humans occurs early in development.

Publisher

American Physiological Society

Subject

Physiology

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3