Combination exposure of melamine and cyanuric acid is associated with polyuria and activation of NLRP3 inflammasome in rats

Author:

Wang Feifei1,Liu Qiaojuan1,Jin Lizi2,Hu Shan1,Luo Renfei1,Han Mengke1,Zhai Yonggong3,Wang Weidong1,Li Chunling1

Affiliation:

1. Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

2. Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, China

3. Life Sciences College, Beijing Normal University, Beijing, People’s Republic of China

Abstract

The molecular mechanisms of melamine-induced renal toxicity have not been fully understood. The purpose of the study aimed to investigate whether melamine and cyanuric acid induced NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the kidney, which may contribute to abnormal water and sodium handling in a rat model. Wistar rats received melamine (Mel; 200 mg·kg body wt−1·day−1), cyanuric acid (CA; 200 mg·kg body wt−1·day−1), or Mel plus CA (Mel + CA; 100 mg·kg body wt−1·day−1, each) for 2 wk. Mel + CA caused damaged tubular epithelial structure and organelles, dilated tubular lumen, and inflammatory responses. Crystals were observed in urine and serum specimen, also in the lumen of dilated distal renal tubules. The combined ingestion of Mel and CA in rats caused a markedly impaired urinary concentration, which was associated with reduced protein expression of aquaporin (AQP)1, 2, and 3 in inner medulla and α-Na-K-ATPase and Na-K-2Cl transporters in cortex and outer medulla. Mel + CA treatment was associated with increased protein expression of CD3 and mRNA levels of CD68 and F4/80 as well as phosphorylation of NF-κB in the kidney. Mel + CA treatment increased protein and mRNA expression of NLRP3 inflammasome components apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, and IL-1β in the inner medulla of rats. NF-κB inhibitor Bay 11-7082 reduced IL-1β expression induced by Mel + CA and prevented downregulation of AQP2 in inner medullary collecting duct cell suspensions. In conclusion, Mel + CA treatment caused urinary-concentrating defects and reduced expression of renal AQPs and key sodium transporters, which is likely due to the inflammatory responses and activation of NLRP3 inflammasome induced by crystals formed in the kidney.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3