Author:
Tarry-Adkins Jane L.,Ozanne Susan E.,Norden Anthony,Cherif Hanane,Hales C. Nicholas
Abstract
It is well documented that females live longer than males and more renal damage occurs in males. However, the underlying mechanisms are not fully understood. The aim of this study was to define aging effects on albuminuria and kidney telomere length from male and female rats and to determine mechanisms, which may explain any observed differences. Cellular senescence is known to play a major role in nephropathology, and as such, a range of senescence markers were compared in male and female renal tissue. Oxidative stress has been shown to accelerate telomere shortening and elicit cellular growth arrest. Thus major antioxidants, MnSOD, glutathione peroxidase I, and glutathione reductase, were also evaluated. Urinary albumin excretion increased with age in both sexes, but the increase was greater in males than females. In the cortex and medulla of both male and female rats, age-related telomere shortening occurred, the effect being more pronounced in males than in females. The cortical region had more short telomeres than the medulla in both genders. p53 And p21 expression over time significantly increased in males, but not in females. MnSOD expression was elevated in female vs. male cortex. Gxp1 and glutathione reductase levels were increased in the older female cortex compared with males. Our findings indicate that a reduction in oxidative damage protection may be responsible for accelerated telomere shortening over time, resulting in increased cellular senescence, loss of renal function, and death in male rats.
Publisher
American Physiological Society
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献