Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function

Author:

Huang Chunfa,Sindic Aleksandra,Hill Ceredwyn E.,Hujer Kristine M.,Chan Kim W.,Sassen Martin,Wu Zhenzhen,Kurachi Yoshihisa,Nielsen Soren,Romero Michael F.,Miller R. Tyler

Abstract

The Ca2+-sensing receptor (CaR), a G protein-coupled receptor, is expressed in many epithelial tissues including the parathyroid glands, kidney, and GI tract. Although its role in regulating PTH levels and Ca2+metabolism are best characterized, it may also regulate salt and water transport in the kidney as demonstrated by recent reports showing association of potent gain-of-function mutations in the CaR with a Bartter-like, salt-wasting phenotype. To determine whether this receptor interacts with novel proteins that control ion transport, we screened a human adult kidney cDNA library with the COOH-terminal 219 amino acid cytoplasmic tail of the CaR as bait using the yeast two-hybrid system. We identified two independent clones coding for ∼125 aa from the COOH terminus of the inwardly rectifying K+channel, Kir4.2. The CaR and Kir4.2 as well as Kir4.1 (another member of Kir4 subfamily) were reciprocally coimmunoprecipitated from HEK-293 cells in which they were expressed, but the receptor did not coimmunoprecipitate with Kir5.1 or Kir1.1. Both Kir4.1 and Kir4.2 were immunoprecipitated from rat kidney extracts with the CaR. In Xenopus laevis oocytes, expression of the CaR with either Kir4.1 or Kir4.2 channels resulted in inactivation of whole cell current as measured by two-electrode voltage clamp, but the nonfunctional CaR mutant CaRR796W, and that does not coimmunoprecipitate with the channels, had no effect. Kir4.1 and the CaR were colocalized in the basolateral membrane of the distal nephron. The CaR interacts directly with Kir4.1 and Kir4.2 and can decrease their currents, which in turn could reduce recycling of K+for the basolateral Na+-K+-ATPase and thereby contribute to inhibition of Na+reabsorption.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3