Differential effects of urethane and isoflurane on external urethral sphincter electromyography and cystometry in rats

Author:

Chang Hui-Yi,Havton Leif A.

Abstract

Urethane is a common and often preferred anesthetic agent for urodynamic recordings in rats, but its use is often restricted to terminal procedures because of a prolonged duration of action and potentially toxic effects. When urodynamic recordings are part of survival procedures in rodent experimental models, inhalation anesthetics, such as isoflurane, are frequently used and generally well tolerated. In this study, we compared the effects of urethane and isoflurane on lower urinary tract function. For this purpose, adult female rats were anesthetized by subcutaneous administration of urethane ( n = 6) or by inhalation of isoflurane ( n = 5). Micturition reflexes were assessed by concurrent cystometrogram and external urethral sphincter (EUS) electromyography (EMG) recordings to determine bladder contractile properties, EUS activation patterns, and the coordination between bladder contractions and EUS activation. Compared with urethane, isoflurane reduced frequency of bursts, firing frequency, and amplitude of EUS EMG activity during voiding as well as the EUS EMG amplitude during the bladder filling phase. Isoflurane also prolonged the bladder intercontractile intervals. Other several key functional aspects of the bladder contractile properties as well as the coordination between bladder contractions were not different between the two experimental groups. We conclude that micturition reflexes were differentially affected by isoflurane and urethane. Specifically, isoflurane exhibited a significant suppression of the EUS EMG activity and prolonged the bladder intercontractile intervals compared with urethane. We suggest that these anesthetic properties be taken into consideration during the experimental design and interpretation of urodynamic recordings in rodent models.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3