Differential traffic of proximal tubule Na+transporters during hypertension or PTH: NHE3 to base of microvilli vs. NaPi2 to endosomes

Author:

Yang Li E.,Maunsbach Arvid B.,Leong Patrick K. K.,McDonough Alicia A.

Abstract

We previously reported that Na+/H+exchanger type 3 (NHE3) and NaPi2 are acutely retracted from the proximal tubule (PT) microvilli (MV) during acute hypertension [high blood pressure (BP)] or parathyroid hormone (PTH) treatment. By subcellular membrane fractionation, NHE3 and NaPi2 show indistinguishable redistribution patterns out of light-density into heavy-density membranes in response to either treatment consistent with a retraction from the apical MV to the intermicrovillar cleft region. This study aimed to examine the redistribution of PT NHE3 vs. NaPi2 by confocal and electron microscopy during high BP and during PTH treatment to determine whether their respective destinations overlap or are distinct. High-BP protocol: systolic BP was increased 50–60 mmHg by increasing peripheral resistance for 20 min; PTH protocol: rats were infused with 6.6 μg/kg iv of PTH followed by 0.1 μg·kg−1·min−1infusion for 1 h. For light microscopy, rats were infused with 25 mg of horseradish peroxidase (HRP) 10 min before kidney fixation. Kidney slices were dual labeled with either NHE3 or NaPi2 and either clathrin-coated vesicle adaptor protein AP2 or endosome marker HRP. The results demonstrate retraction of NHE3 from the MV to the base of MV during either high-BP or PTH treatment: NHE3 staining did not retract below the AP2-stained domain or to HRP-labeled endosomes in either model. In comparison, NaPi2 was retracted from MV to below the AP2-stained region in both models, a little colocalizing with HRP staining. At the electron microscopic level with immunogold labeling, during high BP NHE3 was concentrated in a distinct domain in the base of the MV while NaPi2 moved to endosomes. The results demonstrate that there are divergent routes of retraction of PT NHE3 and NaPi2 from the MV during acute hypertension or PTH treatment: NHE3 is not internalized but remains at the base of the MV while NaPi2 is internalized.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3