Uninephrectomy and apical fluid shear stress decrease ENaC abundance in collecting duct principal cells

Author:

Ernandez T.12,Udwan K.2,Chassot A.2,Martin P.-Y.1,Feraille E.2

Affiliation:

1. Service of Nephrology, University Hospital of Geneva, Geneva, Switzerland

2. Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland

Abstract

Acute nephron reduction such as after living kidney donation may increase the risk of hypertension. Uninephrectomy induces major hemodynamic changes in the remaining kidney, resulting in rapid increase of single-nephron glomerular filtration rate (GFR) and fluid delivery in the distal nephron. Decreased sodium (Na) fractional reabsorption after the distal tubule has been reported after uninephrectomy in animals preserving volume homeostasis. In the present study, we thought to specifically explore the effect of unilateral nephrectomy on epithelial Na channel (ENaC) subunit expression in mice. We show that γ-ENaC subunit surface expression was specifically downregulated after uninephrectomy, whereas the expression of the aldosterone-sensitive α-ENaC and α1-Na-K-ATPase subunits as well as of kidney-specific Na-K-Cl cotransporter isoform and Na-Cl cotransporter were not significantly altered. Because acute nephron reduction induces a rapid increase of single-nephron GFR, resulting in a higher tubular fluid flow, we speculated that local mechanical factors such as fluid shear stress (FSS) were involved in Na reabsorption regulation after uninephrectomy. We further explore such hypothesis in an in vitro model of FSS applied on highly differentiated collecting duct principal cells. We found that FSS specifically downregulates β-ENaC and γ-ENaC subunits at the transcriptional level through an unidentified heat-insensitive paracrine basolateral factor. The primary cilium as a potential mechanosensor was not required. In contrast, protein kinase A and calcium-sensitive cytosolic phospholipase A2 were involved, but we could not demonstrate a role for cyclooxygenase or epoxygenase metabolites.

Funder

Swiss National Science Foundation, National Center of Competence in Research Kidney control of homeostasis (NCCR Kidney.CH) junior grant

Swiss National Science Foundation (Schweizerische Nationalfonds)

Swiss National Science Foundation, NCCR Kidney.CH

Publisher

American Physiological Society

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3