Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells

Author:

Tian Wei1,Cohen David M.12

Affiliation:

1. Division of Nephrology, Department of Medicine, and

2. Department of Cell and Developmental Biology, Oregon Health and Science University and the Portland Veterans Affairs Medical Center, Portland, Oregon 97201

Abstract

Although urea is considered to be a cell stressor even in renal medullary cells perpetually exposed to this solute in vivo by virtue of the renal concentrating mechanism, aspects of urea signaling resemble that of a peptide mitogen. Urea was compared with epidermal growth factor and hypertonic NaCl or hypertonic mannitol using a large-scale expression array-based approach. The expression profile in response to urea stress more closely resembled that of EGF treatment than hypertonic stress, as determined by hierarchical cluster analysis; the effect of urea+NaCl was equidistant from that of either solute applied individually. Among the most highly urea- and hypertonicity-responsive transcripts were genes that had previously been shown to be responsive to these solutes, validating this approach. Increased expression of the activating transcription factor 3 by urea was newly detected via expression array and confirmed via immunoblot analysis. Earlier, we noted an abrogation of tonicity-dependent gene regulation by urea, primarily in a transient transfection-based model (Tian W and Cohen DM. Am J Physiol Renal Physiol 280: F904–F912, 2001). Here we applied K-means cluster analysis to demonstrate that the genes most profoundly up- or downregulated by hypertonic stress were partially restored toward basal levels in the presence of urea pretreatment. These global expression data are consistent with our earlier biochemical studies suggesting that urea affords cytoprotection in this context. In the aggregate, these data strongly support the hypothesis that the urea effect in renal medullary cells resembles that of a peptide mitogen in terms of the adaptive program of gene expression and in terms of cytoprotection from hypertonicity.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3