Tubule-derived lactate is required for fibroblast activation in acute kidney injury

Author:

Shen Yan12,Jiang Lei1,Wen Ping1,Ye Yinyin13,Zhang Yu1,Ding Hao1,Luo Jing1,Xu Lingling1,Zen Ke4,Zhou Yang1,Yang Junwei1

Affiliation:

1. Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China

2. Affiliated Hospital of Nantong University, Nantong, Jiangsu, China

3. Department of Nephrology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China

4. State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, Jiangsu, China

Abstract

Acute kidney injury (AKI) is a highly prevalent medical syndrome associated with high mortality and morbidity. Several types of cells, including epithelial cells, vascular endothelial cells, pericytes, and macrophages, participate in the development of AKI. Recently, renal fibroblasts were found to play an important role in the regulation of tubular injury, repair, and recovery after AKI. However, the mechanisms underlying fibroblast activation and proliferation during the progression of AKI remain unclear. In the present study, we found many activated myofibroblasts located in the renal interstitium with an abundance of extracellular matrix deposition following folic acid-induced AKI. The proliferative pattern of tubular epithelial cells and interstitial cells following acute injury was different, indicating that the proliferation of fibroblasts followed the proliferation of tubular epithelial cells. Furthermore, we observed that proliferative tubular epithelial cells preferred aerobic glycolysis as the dominating metabolic pathway in the progression of AKI. Lactate generated from injured tubules was taken up by interstitial fibroblasts in the later stages of AKI, which induced fibroblast activation and proliferation in vitro. Early inhibition of lactate production in tubules by glycolytic inhibitors suppressed fibroblast activation after folic acid-induced injury. Collectively, these results support the important role of fibroblasts in the development of AKI and suggest that lactate produced by glycolysis in tubular epithelial cells is a novel regulator of fibroblast activation and proliferation.

Funder

National Natural Science Foundation of China

Science and Technology Support Program of Jiangsu Province

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3