Author:
Djamali Arjang,Sadowski Elizabeth A.,Muehrer Rebecca J.,Reese Shannon,Smavatkul Chanigan,Vidyasagar Aparna,Fain Sean B.,Lipscomb Ryan C.,Hullett Debra H.,Samaniego-Picota Millie,Grist Thomas M.,Becker Bryan N.
Abstract
Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) uses deoxyhemoglobin as an endogenous contrast agent for the noninvasive assessment of tissue oxygen bioavailability. We hypothesized that intrarenal oxygenation was impaired in patients with chronic allograft nephropathy (CAN). Ten kidney-transplant recipients with CAN and nine healthy volunteers underwent BOLD-MRI. Medullary R2* (MR2*) and cortical R2* (CR2*) levels (measures directly proportional to tissue deoxyhemoglobin levels) were determined alongside urine and serum markers of oxidative stress (OS): hydrogen peroxide (H2O2), F2-isoprostanes, total nitric oxide (NO), heat shock protein 27 (HSP27), and total antioxidant property (TAOP). Mean MR2* and CR2* levels were significantly decreased in CAN (increased local oxyhemoglobin concentration) compared with healthy volunteers (20.7 ± 1.6 vs. 23.1 ± 1.8/s, P = 0.03 and 15.9 ± 1.9 vs. 13.6 ± 2.3/s, P = 0.05, respectively). There was a significant increase in serum and urine levels of H2O2and serum HSP27 levels in patients with CAN. Conversely, urine NO levels and TAOP were significantly increased in healthy volunteers. Multiple linear regression analyses showed a significant association between MR2* and CR2* levels and serum/urine biomarkers of OS. BOLD-MRI demonstrated significant changes in medullary and cortical oxygen bioavailability in allografts with CAN. These correlated with serum/urine biomarkers of OS, suggesting an association between intrarenal oxygenation and OS.
Publisher
American Physiological Society
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献