Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway

Author:

Liu Kathleen D.,Datta Anirban,Yu Wei,Brakeman Paul R.,Jou Tzuu-Shuh,Matthay Michael A.,Mostov Keith E.

Abstract

Epithelial cells are characterized by the ability to form sheets of cells that surround fluid-filled lumens. Cells in these sheets exhibit a characteristic subcellular polarity, with an apical pole that faces the lumen and a basolateral pole that is in contact with other cells and the extracellular matrix (ECM). To investigate the signaling events required for polarization and lumen formation, we have taken advantage of the ability of Madin-Darby canine kidney (MDCK) cells to dynamically remodel their polarity in response to changes in ECM cues. When MDCK cells are grown in suspension culture, they form multicellular “inside-out” cysts with apical proteins found on the peripheral surface and basolateral markers on the interior surface. When these inside-out cysts are embedded in ECM, they rapidly reorient their polarity: apical proteins become localized to the inside surface, and basolateral proteins are found on the surface that contacts ECM. Here we have characterized the signaling requirements for these early molecular reorientation events. Specifically, expression of a dominant-negative form of Rac1 (DN-Rac1) blocks the reorientation of polarity. Phosphoinositide 3′-kinase is required for apical membrane protein remodeling from the initial apical membrane surface. Cells expressing DN-Rac1 fail to detectably activate the PI 3-kinase/protein kinase B pathway. Last, we found that atypical protein kinase C (aPKC) is also required for reorientation of polarity, since an inhibitor of atypical PKC blocks reorientation. This effect cannot be overcome by constitutively active Rac1, demonstrating that both Rac1 and atypical PKC are required for reorientation of cellular polarity.

Publisher

American Physiological Society

Subject

Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3