P2Y2 receptor mRNA and protein expression is altered in inner medullas of hydrated and dehydrated rats: relevance to AVP-independent regulation of IMCD function

Author:

Kishore Bellamkonda K.,Krane Carissa M.,Miller R. Lance,Shi Huihui,Zhang Ping,Hemmert Andrew,Sun Rujia,Nelson Raoul D.

Abstract

Arginine vasopressin (AVP), acting through a cAMP second messenger system, regulates osmotic water permeability ( Pf) of the collecting duct. In the collecting duct, the activities of cAMP and phosphonositides (PI) are mutually inhibitory. The P2Y2 receptor (P2Y2-R) is a G protein-coupled extracellular nucleotide receptor associated with PI signaling pathway. Previously, we showed that P2Y2-R is expressed in inner medullary collecting duct (IMCD) of rat, and its agonist (ATP/UTP) activation decreased AVP-induced Pf and resulted in enhanced production of prostaglandin E2. Hydrated and dehydrated states are associated with alterations in the circulating levels of AVP, expression and/or subcellular distribution of AVP-regulated aquaporin-2 water channel in IMCD and thus Pf of IMCD. We hypothesized that altered expression and/or signaling via P2Y2-R may also modulate IMCD function in these conditions. Sprague-Dawley rats were subjected to dehydration by water deprivation (48 h) or hydration (48 or 96 h) by providing sucrose water. Hydration or dehydration resulted in marked alterations in mRNA expression (Northern blot analysis and real-time RT-PCR) and protein abundance (Western blot analysis) of P2Y2-R, with hydrated rats showing significantly higher levels compared with dehydrated rats. Sequential hydration and dehydration experiments also revealed that the regulated expression profiles of P2Y2-R mRNA and protein are discordant. Conversely, the expression of V2-R mRNA remained unaltered during hydration and dehydration. Because virtually all renal cells release ATP in a regulated fashion, the observed alterations in P2Y2-R expression in the inner medulla in hydrated and dehydrated states may constitute a novel mechanism of purinergic modulation of IMCD function.

Publisher

American Physiological Society

Subject

Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3