SLC4 base (HCO3−, CO32−) transporters: classification, function, structure, genetic diseases, and knockout models

Author:

Pushkin Alexander,Kurtz Ira

Abstract

In prokaryotic and eukaryotic organisms, biochemical and physiological processes are sensitive to changes in H+activity. For these processes to function optimally, a variety of proteins have evolved that transport H+/base equivalents across cell and organelle membranes, thereby maintaining the pH of various intracellular and extracellular compartments within specific limits. The SLC4 family of base (HCO3, CO32) transport proteins plays an essential role in mediating Na+- and/or Cl-dependent base transport in various tissues and cell types in mammals. In addition to pH regulation, specific members of this family also contribute to vectorial transepithelial base transport in several organ systems including the kidney, pancreas, and eye. The importance of these transporters in mammalian cell biology is highlighted by the phenotypic abnormalities resulting from spontaneous SLC4 mutations in humans and targeted deletions in murine knockout models. This review focuses on recent advances in our understanding of the molecular organization and functional properties of SLC4 transporters and their role in disease.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3