MiR-21 promotes calcium oxalate-induced renal tubular cell injury by targeting PPARA

Author:

Su Boxing1,Han Haibo2,Ji Chaoyue1,Hu Weiguo1,Yao Jingjing3,Yang Jianghui3,Fan Yunfei1,Li Jianxing1

Affiliation:

1. Department of Urology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

2. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China

3. Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Abstract

Kidney stone disease is a crystal concretion formed in the kidneys that has been associated with an increased risk of chronic kidney disease. MicroRNAs are functionally involved in kidney injury. Data mining using a microRNA array database suggested that miR-21 may be associated with calcium oxalate monohydrate (COM)-induced renal tubular cell injury. Here, we confirmed that COM exposure significantly upregulated miR-21 expression, inhibited proliferation, promoted apoptosis, and caused lipid accumulation in an immortalized renal tubular cell line (HK-2). Moreover, inhibition of miR-21 enhanced proliferation and decreased apoptosis and lipid accumulation in HK-2 cells upon COM exposure. In a glyoxylate-induced mouse model of renal calcium oxalate deposition, increased miR-21 expression, lipid accumulation, and kidney injury were also observed. In silico analysis and subsequent experimental validation confirmed the peroxisome proliferator-activated receptor (PPAR)-α gene (PPARA) a key gene in fatty acid oxidation, as a direct miR-21 target. Suppression of miR-21 by miRNA antagomiR or activation of PPAR-α by its selective agonist fenofibrate significantly reduced renal lipid accumulation and protected against renal injury in vivo. In addition, miR-21 was significantly increased in urine samples from patients with calcium oxalate renal stones compared with healthy volunteers. In situ hybridization of biopsy samples from patients with nephrocalcinosis revealed that miR-21 was also significantly upregulated compared with normal kidney tissues from patients with renal cell carcinoma who underwent radical nephrectomy. These results suggested that miR-21 promoted calcium oxalate-induced renal tubular cell injury by targeting PPARA, indicating that miR-21 could be a potential therapeutic target and biomarker for nephrolithiasis.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Capital Health Research and Development of Special

Publisher

American Physiological Society

Subject

Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3