HIV gene expression deactivates redox-sensitive stress response program in mouse tubular cells both in vitro and in vivo

Author:

Salhan Divya1,Pathak Shresh1,Husain Mohammad1,Tandon Pranai1,Kumar Dileep1,Malhotra Ashwani1,Meggs Leonard G.1,Singhal Pravin C.1

Affiliation:

1. North Shore-LIJ Health System, Department of Medicine, Division of Kidney Diseases and Hypertension, New Hyde Park, New York; and Nephrology Division, Ochsner Clinic, New Orleans, Louisiana

Abstract

Human immunodeficiency virus (HIV)-1 has been reported to cause tubular cell injury both in in vivo and in vitro studies. In the present study, we evaluated the role of oxidative stress in the induction of apoptosis in HIV gene expressing mouse tubular cells in in vivo (Tg26, a transgenic mouse model of HIV-associated nephropathy) and in vitro (tubular cells were transduced with pNL4-3: ΔG/P-GFP, VSV.G psueudo typed virus) studies. Although Tg26 mice showed enhanced tubular cell reactive oxygen species (ROS) generation and apoptosis, renal tissue did not display a robust antioxidant response in the form of enhanced free radical scavenger (MnSOD/catalase) expression. Tg26 mice not only showed enhanced tubular cell expression of phospho-p66ShcA but also displayed nuclear Foxo3a translocation to the cytoplasm. These findings indicated deactivation of tubular cell Foxo3A-dependent redox-sensitive stress response program (RSSRP) in Tg26 mice. In in vitro studies, NL4-3 (pNL4-3: ΔG/P-GFP, VSV.G pseudotyped virus)-transduced mouse proximal tubular cells (NL4-3/MPTEC) displayed enhanced phosphorylation of p66ShcA. NL4-3/MPTECs also displayed greater ( P < 0.01) ROS generation when compared with empty vector-transduced tubular cells; however, both diminution of p66ShcA and N-acetyl cysteine attenuated NL4-3-induced tubular cell ROS generation as well as apoptosis. In addition, both antioxidants and free radical scavengers partially inhibited HIV-induced tubular cell apoptosis. NL4-3/MPTEC displayed deactivation of RSSRP in the form of enhanced phosphorylation of Foxo3A and attenuated expression of superoxide dismutase (SOD) and catalase. Since both SOD and catalase were able to provide protection against HIV-1-induced tubular cell apoptosis, it suggests that HIV-1-induced proapoptotic effect may be a consequence of the deactivated RSSRP.

Publisher

American Physiological Society

Subject

Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3