Renal oxidative vulnerability due to changes in mitochondrial-glutathione and energy homeostasis in a rat model of calcium oxalate urolithiasis

Author:

Meimaridou Eirini,Lobos Edgar,Hothersall John S.

Abstract

Calcium oxalate monohydrate (COM) crystals are the commonest component of kidney stones. Oxalate and COM crystals in renal cells are thought to contribute to pathology via prooxidant events. Using an in vivo rat model of crystalluria induced by hyperoxaluria plus hypercalciuria [ethylene glycol (EG) plus 1,25-dihydroxycholecalciferol (DHC)], we measured glutathione and energy homeostasis of kidney mitochondria. Hyperoxaluria or hypercalciuria without crystalluria was also investigated. After 1–3 wk of treatment, kidney cryosections were analyzed by light microscopy. In kidney subcellular fractions, glutathione and antioxidant enzymes were measured. In mitochondria, oxygen consumption and superoxide formation as well as cytochrome c content were measured. EG plus DHC treatment increased formation of renal birefringent crystal. Histology revealed increased renal tubular pathology characterized by obstruction, distension, and interstitial inflammation. Crystalluria at all time points led to oxidative stress manifest as decreased cytosolic and mitochondrial glutathione and increased activity of the antioxidant enzymes glutathione reductase and -peroxidase (mitochondria) and glucose-6-phosphate dehydrogenase (cytosol). These changes were followed by a significant decrease in mitochondrial cytochrome c content at 2–3 wk, suggesting the involvement of apoptosis in the renal pathology. Mitochondrial oxygen consumption was severely impaired in the crystalluria group without increased mitochondrial superoxide formation. Some of these changes were also evident in hyperoxaluria at week 1 but were absent at later times and in all calciuric groups. Our data indicate that impaired electron flow did not cause superoxide formation; however, mitochondrial dysfunction contributes to pathological events when tubular crystal-cell interactions are uncontrolled, as in kidney stones disease.

Publisher

American Physiological Society

Subject

Physiology

Reference44 articles.

1. Hyperoxaluric calcium nephrolithiasis

2. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity

3. Microarray analysis of changes in renal phenotype in the ethylene glycol rat model of urolithiasis: potential and pitfalls

4. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor

5. De Water R, Boeve ER, van Miert PP, Deng G, Cao LC, Stijnen T, de Bruijn WC, and Schroder FH.Experimental nephrolithiasis in rats: the effect of ethylene glycol and vitamin D3 on the induction of renal calcium oxalate crystals.Scanning Microsc10: 591–601, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3