Chronic NF-κB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR

Author:

Elks Carrie M.,Mariappan Nithya,Haque Masudul,Guggilam Anuradha,Majid Dewan S. A.,Francis Joseph

Abstract

Nuclear factor-κB (NF-κB) plays an important role in hypertensive renal injury; however, its roles in perpetuating mitochondrial oxidative stress and renal dysfunction remain unclear. In this study, we assessed the effects of chronic NF-κB blockade with pyrrolidine dithiocarbamate (PDTC) on renal dysfunction and mitochondrial redox status in spontaneously hypertensive rats (SHR). PDTC (150 mg·kg body wt−1·day−1) or vehicle was administered orally to 8-wk-old SHR and their respective controls for 15 wk. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography at the start of and at every third week throughout the study. After 15 wk of treatment, anesthetized rats underwent acute renal experiments to determine renal blood flow and glomerular filtration rate using PAH and inulin clearance techniques, respectively. Following renal experiments, kidneys were excised from killed rats, and cortical mitochondria were isolated for reactive oxygen species (ROS) measurements using electron paramagnetic resonance. Tissue mRNA and protein levels of NF-κB and oxidative stress genes were determined using real-time PCR and immunofluorescence or Western blotting, respectively. PDTC treatment partially attenuated the increase in SBP (196.4 ± 9.76 vs. 151.4 ± 2.12; P < 0.05) and normalized renal hemodynamic and excretory parameters and ATP production rates in SHR. PDTC treatment also attenuated the higher levels of cytosolic and mitochondrial ROS generation and tissue mRNA and protein expression levels of NF-κB and oxidative stress genes in SHR without any comparable responses in control rats. These findings suggest that NF-κB activation by ROS induces the cytosolic and mitochondrial oxidative stress and tissue injury that contribute to renal dysfunction observed in SHR.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3