N-sulfation of heparan sulfate is critical for syndecan-4-mediated podocyte cell-matrix interactions

Author:

Sugar Terrel1,Wassenhove-McCarthy Deborah J.2,Orr A. Wayne2,Green Jonette2,van Kuppevelt Toin H.3,McCarthy Kevin J.12ORCID

Affiliation:

1. Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana;

2. Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana; and

3. Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Abstract

Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this study, a murine model in which the enzyme N-deacetylase/ N-sulfotransferase 1 (NDST1) was specifically deleted in podocytes and immortalized podocyte cell lines lacking NDST1 were developed and used to explore the effects of such a mutation on podocyte behavior in vitro. NDST1 is a bifunctional enzyme, ultimately responsible for N-sulfation of heparan glycosaminoglycans produced by cells. Immunostaining of glomeruli from mice whose podocytes were null for Ndst1 ( Ndst1−/−) showed a disrupted pattern of localization for the cell surface proteoglycan, syndecan-4, and for α-actinin-4 compared with controls. The pattern of immunostaining for synaptopodin and nephrin did not show as significant alterations. In vitro studies showed that Ndst1−/− podocytes attached, spread, and migrated less efficiently than Ndst1+/+ podocytes. Immunostaining in vitro for several markers for molecules involved in cell-matrix interactions showed that Ndst1−/− cells had decreased clustering of syndecan-4 and decreased recruitment of protein kinase-Cα, α-actinin-4, vinculin, and phospho-focal adhesion kinase to focal adhesions. Total intracellular phospho-focal adhesion kinase was decreased in Ndst1−/− compared with Ndst1+/+ cells. A significant decrease in the abundance of activated integrin α5β1 on the cell surface of Ndst1−/− cells compared with Ndst1+/+ cells was observed. These results serve to highlight the critical role of heparan sulfate N-sulfation in facilitating normal podocyte-matrix interactions.

Publisher

American Physiological Society

Subject

Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3