Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia

Author:

Lebowitz Jonathan1,An Bing1,Edinger Robert S.1,Zeidel Mark L.1,Johnson John P.1

Affiliation:

1. Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Abstract

In several in vivo settings, prolonged alterations in the rate of apical Na+ entry into epithelial cells alter the ability of these cells to reabsorb Na+. We previously modeled this load dependence of transport in A6 cells by either decreasing Na+ entry via apical Na+ removal or amiloride or enhancing Na+ entry by chronic short-circuiting (Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnson JP, and Zeidel ML. Am J Physiol Cell Physiol 270: C600-C607, 1996). Inhibition of Na+ entry by either method was associated with striking downregulation of transport rate as measured by short-circuit current ( Isc), which recovered to basal levels of transport over a period of hours. Conversely, upregulation of Na+ entry by short-circuiting resulted in a sustained increase in transport rate that also returned to basal levels over a period of hours. The current studies were undertaken to determine whether these conditions were associated with alterations in either the whole cell content or apical membrane distribution of sodium channel (ENaC) subunits or on basolateral expression of either of the subunits of the Na+-K+-ATPase. We compared these effects to those achieved by chronic upregulation of Na+ transport by aldosterone. Whole cell levels of ENaC subunits were measured by immunoblot following 18-h inhibition of Na+ entry achieved by either tetramethylammonium replacement of Na+ or apical amiloride or after an 18-h increase in Na+ entry achieved by chronic short-circuiting. None of these maneuvers significantly altered the whole cell content of any of the ENaC subunits compared with control cells. We then examined the effects of these maneuvers on apical membrane ENaC expression using domain-specific biotinylation and immunoblot. Inhibition of Na+ entry by either method was associated with a profound decrease in apical membrane β-ENaC without significant changes in apical membrane α-or γ-ENaC amounts. Restoration of apical Na+ and/or removal of amiloride resulted in return of Isc to control levels over 2 h and coincided with return of apical β-ENaC to control levels without change in apical α- or γ-ENaC. Stimulation of Na+ transport by short-circuiting, in contrast, did not significantly alter apical membrane composition of any of the ENaC subunits. Basolateral expression of Na+-K+-ATPase was also measured by biotinylation and immunoblot and was unchanged under all conditions. Aldosterone increased basolateral expression of the α-subunit of Na+-K+-ATPase. These results suggest that chronic downregulation of transport is mediated, in part, by a selective decrease in apical membrane ENaC expression, consistent with our previous observations of noncoordinate regulation of ENaC expression under varying transport conditions in A6 cells. The chronic increase in the rate of Na+ entry is not associated with any of the changes in transporter density at either apical or basolateral membrane seen with aldosterone, suggesting that these two mechanisms of augmenting transport are completely distinct.

Publisher

American Physiological Society

Subject

Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3