Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells

Author:

Nowak Grazyna1,Soundararajan Sridharan1,Mestril Ruben2

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and

2. Department of Cell and Molecular Physiology, Loyola Medical University Center, Maywood, Illinois

Abstract

This study determined the role of PKC-α and associated inducible heat shock protein 70 (iHSP70) in the repair of mitochondrial function in renal proximal tubular cells (RPTCs) after oxidant injury. Wild-type PKC-α (wtPKC-α) and an inactive PKC-α [dominant negative dn; PKC-α] mutant were overexpressed in primary cultures of RPTCs, and iHSP70 levels and RPTC regeneration were assessed after treatment with the oxidant tert-butylhydroperoxide (TBHP). TBHP exposure increased ROS production and induced RPTC death, which was prevented by ferrostatin and necrostatin-1 but not by cyclosporin A. Overexpression of wtPKC-α maintained mitochondrial levels of active PKC-α, reduced cell death, and accelerated proliferation without altering ROS production in TBHP-injured RPTCs. In contrast, dnPKC-α blocked proliferation and monolayer regeneration. Coimmunoprecipitation and proteomic analysis demonstrated an association between inactive, but not active, PKC-α and iHSP70 in mitochondria. Mitochondrial iHSP70 levels increased as levels of active PKC-α decreased after injury. Overexpression of dnPKC-α augmented, whereas overexpression of wtPKC-α abrogated, oxidant-induced increases in mitochondrial iHSP70 levels. iHSP70 overexpression 1) maintained mitochondrial levels of phosphorylated PKC-α, 2) improved the recovery of state 3 respiration and ATP content, 3) decreased RPTC death (an effect abrogated by cyclosporine A), and 4) accelerated proliferation after oxidant injury. In contrast, iHSP70 inhibition blocked the recovery of ATP content and exacerbated RPTC death. Inhibition of PKC-α in RPTC overexpressing iHSP70 blocked the protective effects of iHSP70. We conclude that active PKC-α maintains mitochondrial function and decreases cell death after oxidant injury. iHSP70 is recruited to mitochondria in response to PKC-α dephosphorylation and associates with and reactivates inactive PKC-α, which promotes the recovery of mitochondrial function, decreases RPTC death, and improves regeneration.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3