Inhibition of soluble epoxide hydrolase prevents renal interstitial fibrosis and inflammation

Author:

Kim Jinu123,Imig John D.4,Yang Jun5,Hammock Bruce D.5,Padanilam Babu J.16

Affiliation:

1. Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska;

2. Department of Anatomy, Jeju National University School of Medicine, Jeju, Republic of Korea;

3. Department of Biomedicine and Drug Development, Jeju National University, Jeju, Republic of Korea;

4. Department of Pharmacology and Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin;

5. Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California; and

6. Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, Nebraska

Abstract

The pathophysiological events that lead to renal interstitial fibrogenesis are incompletely understood. Epoxyeicosatrienoic acid (EET), an arachidonic acid metabolite, has anti-inflammatory and profibrinolytic functions. Soluble epoxide hydrolase (sEH) converts EET to less active dihydroxyeicosatrienoic acid. Here, we tested the hypothesis that sEH deficiency would prevent tubulointerstitial fibrosis and inflammation induced by unilateral ureteral obstruction (UUO) in mouse kidneys. The loss of sEH enhanced levels of EET regioisomers and abolished tubulointerstitial fibrosis as demonstrated by reduced collagen deposition and myofibroblast formation at 3 and 10 days after UUO. The inflammatory response was prevented as demonstrated by decreased influx of neutrophil and macrophage, expression of inflammatory cytokines, and chemotactic factors in sEH-deficient UUO kidneys. Pharmacological inhibition of sEH also prevented inflammation and fibrosis after UUO. Next, we delved into the molecular mechanisms piloting the beneficial effects of sEH deficiency in renal fibrosis. UUO upregulated profibrotic factors associated with transforming growth factor (TGF)-β1/Smad3 signaling, oxidative stress, and NF-κB activation, and downregulated antifibrotic factors including peroxisome proliferator-activated receptor (PPAR) isoforms, especially PPARγ, but the loss of sEH prevented these adverse effects in UUO kidneys. Furthermore, administration of PPAR antagonists enhanced myofibroblast formation and activation of Smad3 and NF-κB p65, effects that were prevented by sEH deficiency in UUO kidneys. These data demonstrate that loss of sEH promotes anti-inflammatory and fibroprotective effects in UUO kidneys via activation of PPAR isoforms and downregulation of NF-κB, TGF-β1/Smad3, and inflammatory signaling pathways. Our data suggest the potential use of sEH inhibitors in treating fibrotic diseases.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3