Affiliation:
1. Center of Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
Abstract
Most chronic kidney injuries inevitably progress to irreversible renal fibrosis. Tubular epithelial-to-mesenchymal transition (EMT) is recognized to play pivotal roles in the process of renal fibrosis. However, a comprehensive understanding of the pathogenesis of renal scar formation and progression remains an urgent task for renal researchers. The endogenously produced microRNAs (miRNAs), proved to play important roles in gene regulation, probably regulate most genes involved in EMT. In this study, we applied microarray analysis to investigate the expression profiles of miRNA in murine interstitial fibrotic kidneys induced by unilateral ureteral obstruction (UUO). It was found that miR-200a and miR-141, two members of the miR-200 family, were downregulated at the early phase of UUO. In TGF-β1-induced tubular EMT in vitro, it was also found that the members of the miR-200 family were downregulated in a Smad signaling-dependent manner. It was demonstrated that the miR-200 family was responsible for protecting tubular epithelial cells from mesenchymal transition by target suppression of zinc finger E-box-binding homeobox (ZEB) 1 and ZEB2, which are E-cadherin transcriptional repressors. The results suggest that downregulation of the miR-200 family initiates the dedifferentiation of renal tubules and progression of renal fibrosis, which might provide important targets for novel therapeutic strategies.
Publisher
American Physiological Society
Cited by
234 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献