CaR activation increases TNF production by mTAL cells via a Gi-dependent mechanism

Author:

Abdullah Huda Ismail,Pedraza Paulina L.,McGiff John C.,Ferreri Nicholas R.

Abstract

We evaluated the contribution of calcium-sensing receptor (CaR)-mediated Gi-coupled signaling to TNF production in medullary thick ascending limb (mTAL) cells. A selective Gi inhibitor, pertussis toxin (PTX), but not the inactive B-oligomer binding subunit, abolished CaR-mediated increases in TNF production. The inhibitory effect of PTX was partially reversed by using an adenylate cyclase inhibitor. CaR-mediated TNF production also was partially reversed by a cAMP analog, 8-Br-cAMP. IP1 accumulation was CaR dependent and blocked by PI-PLC; partial inhibition also was observed with PTX. CaR increased calcineurin (CaN) activity by approximately threefold, and PTX prevented CaR-mediated increases in CaN activity, an nuclear factor of activated T cells (NFAT)- cis reporter construct, and a TNF promoter construct. The interaction between Gi and PKC was determined, as we previously showed that CaR-mediated TNF production was CaN and NFAT- mediated and Gq dependent. CaR activation increased PKC activity by twofold, an effect abolished by transient transfection with a dominant negative CaR construct, R796W, or pretreatment with PTX. Inhibition with the pan-specific PKC inhibitor GF 109203X (20 nM) abolished CaR-mediated increases in activity of CaN, an NFAT reporter, and a TNF promoter construct. Collectively, the data suggest that Gi-coupled signaling contributes to NFAT-mediated TNF production in a CaN- and PKC-dependent manner and may be part of a CaR mechanism to regulate mTAL function. Moreover, concurrent Gq and Gi signaling is required for CaR-mediated TNF production in mTAL cells via a CaN/NFAT pathway that is PKC dependent. Understanding CaR-mediated signaling pathways that regulate TNF production in the mTAL is crucial to defining novel mechanisms that regulate extracellular fluid volume and salt balance.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3