TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway

Author:

Abe Yoshifusa12,Sakairi Toru3,Beeson Craig4,Kopp Jeffrey B.2

Affiliation:

1. Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan;

2. Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;

3. Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; and

4. Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina

Abstract

Transforming growth factor (TGF)-β has been associated with podocyte injury; we have examined its effect on podocyte bioenergetics. We studied transformed mouse podocytes, exposed to TGF-β1, using a label-free assay system, Seahorse XF24, which measures oxygen consumption rates (OCR) and extracellular acidification rates (ECAR). Both basal OCR and ATP generation-coupled OCR were significantly higher in podocytes exposed to 0.3–10 ng/ml of TGF-β1 for 24, 48, and 72 h. TGF-β1 (3 ng/ml) increased oxidative capacity 75%, and 96% relative to control after 48 and 72 h, respectively. ATP content was increased 19% and 30% relative to control after a 48- and 72-h exposure, respectively. Under conditions of maximal mitochondrial function, TGF-β1 increased palmitate-driven OCR by 49%. Thus, TGF-β1 increases mitochondrial oxygen consumption and ATP generation in the presence of diverse energy substrates. TGF-β1 did not increase cell number or mitochondrial DNA copy number but did increase mitochondrial membrane potential (MMP), which could explain the OCR increase. Reactive oxygen species (ROS) increased by 32% after TGF-β1 exposure for 48 h. TGF-β activated the mammalian target of rapamycin (mTOR) pathway, and rapamycin reduced the TGF-β1-stimulated increases in OCR, ECAR, ATP generation, cellular metabolic activity, and protein generation. Our data suggest that TGF-β1, acting, in part, via mTOR, increases mitochondrial MMP and OCR, resulting in increased ROS generation and that this may contribute to podocyte injury.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3