Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide

Author:

Kone Bruce C.1,Kuncewicz Teresa1,Zhang Wenzheng1,Yu Zhi-Yuan1

Affiliation:

1. Departments of Internal Medicine and Integrative Biology, Pharmacology, and Physiology, The University of Texas Medical School at Houston, Houston, Texas 77030

Abstract

Nitric oxide (NO) is a potent cell-signaling, effector, and vasodilator molecule that plays important roles in diverse biological effects in the kidney, vasculature, and many other tissues. Because of its high biological reactivity and diffusibility, multiple tiers of regulation, ranging from transcriptional to posttranslational controls, tightly control NO biosynthesis. Interactions of each of the major NO synthase (NOS) isoforms with heterologous proteins have emerged as a mechanism by which the activity, spatial distribution, and proximity of the NOS isoforms to regulatory proteins and intended targets are governed. Dimerization of the NOS isozymes, required for their activity, exhibits distinguishing features among these proteins and may serve as a regulated process and target for therapeutic intervention. An increasingly wide array of proteins, ranging from scaffolding proteins to membrane receptors, has been shown to function as NOS-binding partners. Neuronal NOS interacts via its PDZ domain with several PDZ-domain proteins. Several resident and recruited proteins of plasmalemmal caveolae, including caveolins, anchoring proteins, G protein-coupled receptors, kinases, and molecular chaperones, modulate the activity and trafficking of endothelial NOS in the endothelium. Inducible NOS (iNOS) interacts with the inhibitory molecules kalirin and NOS-associated protein 110 kDa, as well as activator proteins, the Rac GTPases. In addition, protein-protein interactions of proteins governing iNOS transcription function to specify activation or suppression of iNOS induction by cytokines. The calpain and ubiquitin-proteasome pathways are the major proteolytic systems responsible for the regulated degradation of NOS isozymes. The experimental basis for these protein-protein interactions, their functional importance, and potential implication for renal and vascular physiology and pathophysiology is reviewed.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3