Upregulation of macula densa cyclooxygenase-2 expression is not dependent on glomerular filtration

Author:

Schweda Frank,Kammerl Martin,Wagner Charlotte,Krämer Bernhard K.,Kurtz Armin

Abstract

Although the regulation of cyclooxygenase-2 (COX-2) expression in the kidney cortex has been extensively characterized, the physiological control mechanisms of COX-2 expression at the level of the kidney and at the level of the tubular cells are not well understood. Based on the current hypothesis that tubular salt transport might be a crucial regulator of COX-2 expression, this study aimed to determine the impact of salt delivery to the tubules (glomerular filtration) for the regulation of COX-2 in the kidney cortex in vivo. To this end, glomerular filtration of the right kidney was abrogated by the ligation of the right ureter of male Sprague-Dawley rats. After 1 wk of ligation, the animals were treated with subcutaneous infusions of furosemide (12 mg·kg−1·day−1) or with a low-salt or a high-salt diet (0.02% wt/wt; 8% wt/wt), and COX-2 as well as renin mRNA expression were determined in the ligated and the nonligated contralateral kidney. During ureteral ligation, hydronephrosis developed with a reduction of medullary mass, while the cortex was preserved. Expressions of the Na-K-2Cl cotransporter isoforms A and B were both reduced in the hydronephrotic cortex to 70 and 35% of the corresponding contralateral intact kidney. Despite the abrogation of glomerular filtration, detected by inulin clearance measurements, renocortical COX-2 mRNA abundance was stimulated by furosemide treatment (3.2-fold) or low-salt diet (2.9-fold) to similar degrees compared with the intact contralateral kidney (2.7-fold for both treatments), whereas a high-salt diet did not significantly suppress COX-2 mRNA in the macula densa region of either kidney. Renin mRNA expression was regulated strictly in parallel in both kidneys, a low-salt diet or furosemide treatment stimulating and a high-salt diet suppressing it. We conclude from these findings that salt delivery to the tubules is not an essential requirement for the upregulation of COX-2 by salt deficiency or by loop diuretics in the rat kidney cortex nor is it for chronic stimulation of renin mRNA expression.

Publisher

American Physiological Society

Subject

Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Salt feedback on the renin-angiotensin-aldosterone system;Pflügers Archiv - European Journal of Physiology;2014-12-13

2. Role of blood pressure in mediating the influence of salt intake on renin expression in the kidney;American Journal of Physiology-Renal Physiology;2012-05-15

3. Physiology of Kidney Renin;Physiological Reviews;2010-04

4. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide;American Journal of Physiology-Renal Physiology;2009-04

5. Regulation of Renin Release by Local and Systemic Factors;Reviews of Physiology, Biochemistry and Pharmacology;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3