Indoxyl sulfate inhibits proliferation of human proximal tubular cells via endoplasmic reticulum stress

Author:

Kawakami Takahisa1,Inagi Reiko1,Wada Takehiko1,Tanaka Tetsuhiro1,Fujita Toshiro1,Nangaku Masaomi1

Affiliation:

1. Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan

Abstract

Uremic toxins can deteriorate renal function, but little is known about its mechanism. Because tubular injury is central to progression of chronic kidney disease (CKD), we investigated the effects of a representative uremic toxin indoxyl sulfate (IS) on tubular cells. IS induced endoplasmic reticulum (ER) stress in cultured human proximal tubular cells, demonstrated by the increase in C/EBP homologous protein (CHOP) in the immunoblots. Moreover, administration of an oral adsorbent AST-120 reduced serum IS concentration and decreased tubular expression of CHOP in immunohistochemistry in 5/6-nephretomized, CKD model, rats. Furthermore, we disclosed that IS inhibited proliferation of tubular cells in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and 5-bromo-2′-deoxyuridine assay, whereas the results of trypan blue exclusion and lactate dehydrogenase assay showed that IS did not promote cell death. This inhibition was mitigated by small interfering (si) RNA against CHOP. Furthermore, IS increased the cyclin-dependent kinase inhibitor p21WAF1/CIP1(p21). Surprisingly, this was mediated by the inflammatory cytokine interleukin (IL)-6, the expression of which was decreased by siRNA against activating transcription factor 4, another ER stress marker; however, the induction of IL-6 and p21 by IS was not suppressed by siRNA targeted to CHOP, suggesting that they were downstream of ER stress, but independent of CHOP. Moreover, we found that their upregulation was dependent on ERK, using the ERK pathway inhibitor U-0126. Collectively, we demonstrated that IS induced ER stress in tubular cells and inhibited cell proliferation via two pathways downstream of ER stress, namely CHOP and ERK-IL-6-p21. These are possible targets for suppressing progression of CKD.

Publisher

American Physiological Society

Subject

Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3