Liver X receptor agonists decrease ENaC-mediated sodium transport in collecting duct cells

Author:

Soodvilai Sunhapas12,Jia Zhanjun3,Fongsupa Somsak12,Chatsudthipong Varanuj12,Yang Tianxin34

Affiliation:

1. Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand;

2. Research Center of Transport Proteins for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand; and

3. Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah;

4. Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China

Abstract

Liver X receptors (LXRs) are nuclear receptors that regulate cholesterol, fatty acid, and glucose metabolism in various tissues. However, the renal action of LXRs is not well understood. Here we investigated the effects of LXR-activating ligands on modulation of epithelial sodium channel (ENaC)-mediated sodium transport in collecting duct cells. Exposure of the M1 cells to the synthetic LXR agonists T0901317 and GW3965 or the natural ligand 22R-hydroxycholesterol for 24 h decreased amiloride-sensitive sodium transport, corresponding with an increase of transepithelial resistance. The inhibition of amiloride-sensitive sodium transport after incubation with T0901317 or GW3965 was not mediated by a reduction of Na+/K+-ATPase-mediated basolateral sodium transport. On the other hand, T0901317 and GW3965 decreased mRNA abundance and membrane expression of ENaC. Preincubation the monolayer with GW3965 attenuated aldosterone-induced stimulation sodium transport. In primary cultures of collecting duct cells, T0901317 and GW3965 similarly inhibited ENaC transport function as in M1 cells. This is the first evidence showing LXR-activating ligands modulate ENaC-mediated sodium transport in collecting duct cells. These results suggest that LXRs may represent a novel therapeutic target for treatment of conditions with dysregulation of ENaC such as hypertension.

Publisher

American Physiological Society

Subject

Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3