Author:
Li Yan,McMartin Kenneth E.
Abstract
Ethylene glycol (EG)-induced hyperoxaluria is the most commonly employed experimental regimen as an animal model of calcium oxalate (CaOx) stone formation. The variant sensitivity to CaOx among different rat strains has not been fully explored, although the Wistar rat is known to accumulate more CaOx in kidney tissue after low-dose EG exposure than in the Fischer 344 (F344) rats. Supersaturation of CaOx in tubular fluid contributes to the amount of CaOx crystal formation in the kidney. We hypothesized that the urinary supersaturation of CaOx in Wistar rats is higher than that of F344 rats, thereby allowing for greater CaOx crystal deposition in the Wistar rat. Age-matched male Wistar and F344 rats were treated with 0.75% EG or drinking water for 8 wk. Twenty-four-hour urine was collected at 0, 2, 4, 6, and 8 wk for analysis of key electrolytes to calculate the CaOx supersaturation. Plasma oxalate level was also measured. Our data confirmed the different sensitivity to renal toxicity from EG between the two rat strains (Wistar > F344). After EG treatment, the plasma oxalate level and urine oxalate excretion were markedly greater in the Wistar rats than in the F344 rats, while urine calcium was slightly decreased in Wistars. Thus, the CaOx supersaturation in urine of Wistar rats was higher, which led to a greater crystal deposition in kidney in Wistar rats. These studies suggest that during EG treatment, changes in urine electrolytes and in CaOx supersaturation occur to a greater extent in the Wistar rat, in agreement with its greater sensitivity to EG toxicity.
Publisher
American Physiological Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献