Descending vasa recta endothelial cells and pericytes form mural syncytia

Author:

Zhang Zhong1,Lin Hai1,Cao Chunhua1,Payne Kristie1,Pallone Thomas L.1

Affiliation:

1. Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland

Abstract

Using patch clamp, we induced depolarization of descending vasa recta (DVR) pericytes or endothelia and tested whether it was conducted to distant cells. Membrane potential was measured with the fluorescent voltage dye di-8-ANEPPS or with a second patch-clamp electrode. Depolarization of an endothelial cell induced responses in other endothelia within a millisecond and was slowed by gap junction blockade with heptanol. Endothelial response to pericyte depolarization was poor, implying high-resistance myo-endothelial coupling. In contrast, dual patch clamp of neighboring pericytes revealed syncytial coupling. At high sampling rate, the spread of depolarization between pericytes and endothelia occurred in 9 ± 2 or 12 ± 2 μs, respectively. Heptanol (2 mM) increased the overall input resistance of the pericyte layer to current flow and prevented transmission of depolarization between neighboring cells. The fluorescent tracer Lucifer yellow (LY), when introduced through ruptured patches, spread between neighboring endothelia in 1 to 7 s, depending on location of the flanking cell. LY diffused to endothelial cells on the ipsilateral but not contralateral side of the DVR wall and minimally between pericytes. We conclude that both DVR pericytes and endothelia are part of individual syncytia. The rate of conduction of membrane potential exceeds that for diffusion of hydrophilic molecules by orders of magnitude. Gap junction coupling of adjacent endothelial cells may be spatially oriented to favor longitudinal transmission along the DVR axis.

Publisher

American Physiological Society

Subject

Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3