Excess prenatal corticosterone exposure results in albuminuria, sex-specific hypotension, and altered heart rate responses to restraint stress in aged adult mice

Author:

O'Sullivan Lee1,Cuffe James S. M.1,Koning Anselm1,Singh Reetu R.1,Paravicini Tamara M.1,Moritz Karen M.1

Affiliation:

1. School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia

Abstract

Exposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 μg·kg−1·h−1) to pregnant mice for 60 h from embryonic day ( E) 12.5. Prenatal CORT resulted in postnatal growth restriction and reduced nephron endowment at postnatal day 30 in both male and female offspring. The reduction in nephron number was associated with increased expression of apoptotic markers in the kidney at E14.5. In offspring of both sexes at 12 mo of age, there were no differences in kidney weights, urine output, or urinary sodium excretion; however, prenatal CORT exposure increased the urinary albumin/creatinine ratio and 24-h urinary albumin excretion. Surprisingly, at 12 mo male but not female offspring exposed to prenatal CORT were hypotensive, with mean arterial blood pressures ∼10 mmHg lower than untreated controls ( P < 0.001). Finally, we examined how offspring responded to a renal or cardiovascular challenge (saline load or restraint stress). When given 0.9% NaCl as drinking water for 7 days, there were no differences in blood pressures or urinary parameters between groups. Restraint stress (15 min) caused a tachycardic response in all animals; however the increase in heart rate was not sustained in male offspring exposed to CORT ( P < 0.01), suggesting that autonomic control of cardiovascular function may be altered. These data demonstrate that excess prenatal CORT impairs kidney development and increases the risk of cardiovascular dysfunction especially in males.

Funder

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3