Phosphoenolpyruvate carboxykinase in urine exosomes reflect impairment in renal gluconeogenesis in early insulin resistance and diabetes

Author:

Sharma Rajni1,Kumari Manju1,Prakash Prem1,Gupta Sushil2,Tiwari Swasti1ORCID

Affiliation:

1. Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

2. Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India

Abstract

Impaired insulin-induced suppression of renal gluconeogenesis could be a risk for hyperglycemia. Diabetes is associated with elevated renal gluconeogenesis; however, its regulation in early insulin resistance is unclear in humans. A noninvasive marker of renal gluconeogenesis would be helpful. Here, we show that human urine exosomes (uE) contain three gluconeogenic enzymes: phosphoenolpyruvate carboxykinase (PEPCK), fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Their protein levels were positively associated with whole body insulin sensitivity. PEPCK protein in uE exhibited a meal-induced suppression. However, subjects with lower insulin sensitivity had blunted meal-induced suppression. Also, uE from subjects with prediabetes and diabetic rats had higher PEPCK relative to nondiabetic controls. Moreover, uE-PEPCK was higher in drug-naïve subjects with diabetes relative to drug-treated subjects with diabetes. To determine whether increased renal gluconeogenesis is associated with hyperglycemia or PEPCK expression in uE, acidosis was induced in rats by 0.28 M NH4Cl with 0.5% sucrose in drinking water. Control rats were maintained on 0.5% sucrose. At the seventh day posttreatment, gluconeogenic enzyme activity in the kidneys, but not in the liver, was higher in acidotic rats. These rats had elevated PEPCK in their uE and a significant rise in blood glucose relative to controls. The induction of gluconeogenesis in human proximal tubule cells increased PEPCK expression in both human proximal tubules and human proximal tubule-secreted exosomes in the media. Overall, gluconeogenic enzymes are detectable in human uE. Elevated PEPCK and its blunted meal-induced suppression in human urine exosomes are associated with diabetes and early insulin resistance.

Funder

Indian Council of Medical Research

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3