cAMP mediates the increase in apical membrane Na+ conductance produced in rat CCD by vasopressin

Author:

Schafer J. A.1,Troutman S. L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Alabama,Birmingham 35294.

Abstract

Experiments were conducted to determine if adenosine 3',5'-cyclic monophosphate (cAMP) mediates the stimulation of Na+ absorption by arginine vasopressin (AVP) in isolated perfused cortical collecting ducts (CCD) from rats treated with deoxycorticosterone pivalate (5 mg im) 5-9 days before study. AVP (220 pM) in the bathing solution hyperpolarized the transepithelial voltage (PDT) from -4.0 +/- 0.8 (SE) to -15.1 +/- 1.4 mV (n = 9, P less than 0.001) and decreased the transepithelial resistance (RT) from 40 +/- 8 to 33 +/- 6 omega.cm2 (n = 5, P less than 0.025). Bath addition of 0.2 mM dibutyryl cAMP (DBcAMP), 0.1 mM isobutylmethylxanthine (IBMX), 0.1 mM DBcAMP plus 0.1 mM IBMX, and 10 or 50 microM forskolin produced the same effects, reversibly hyperpolarizing PDT by 7.0-11.5 mV and decreasing RT by 6-12 omega.cm2. Addition of 10 microM amiloride to the luminal perfusate reduced PDT from -0.9 to +2.0 mV and increased RT in the presence or absence of any of the test agents. Addition of DBcAMP + IBMX or 50 microM forskolin to the bathing solution also reversibly depolarized the basolateral membrane voltage of principal cells by 1-2 mV and decreased the apical membrane fractional resistance from 0.82-0.84 to 0.72-0.77. Both effects were reversed by addition of amiloride to the luminal perfusate. These results demonstrate that cAMP is the intracellular mediator of the increase in apical membrane Na+ conductance produced by AVP in the rat CCD.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3