PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation

Author:

Hebert R. L.1,Jacobson H. R.1,Breyer M. D.1

Affiliation:

1. Department of Medicine, Vanderbilt University, Nashville,Tennessee.

Abstract

It is well known that prostaglandin E2 (PGE2) both inhibits arginine vasopressin (AVP)-stimulated water permeability (hydraulic conductivity, Lp) in the cortical collecting duct (CCD) or, if administered alone, modestly increases Lp in the CCD. These bifunctional effects on Lp correspond to PGE2's capacity to inhibit AVP-stimulated adenylate cyclase (AC) activity, or to singularly stimulate AC activity in the collecting duct. The present studies suggest that the inhibitory effect of PGE2 on Lp may also be mediated by phosphatidylinositol (PI) hydrolysis. Using in vitro microperfused rabbit CCDs, we show that PGE2 releases Ca from intracellular stores. We also demonstrate that the inhibitory effect of PGE2 on AVP-stimulated Lp in the CCD is significantly reversed by the protein kinase C (PKC) inhibitor, staurosporine (SSP). Although PGE2 does not reduce an established water flow response to 8-(4-chlorophenylthio)-adenosine 3',5'-cyclic monophosphate (8-CPTcAMP), when the sequence of addition is reversed and PGE2 is added first, marked inhibition of 8-CPTcAMP-induced Lp is observed. This provides independent evidence that PGE2 can act through a mechanism separate from modulating AC activity. PGE2 inhibition of 8-CPTcAMP-induced Lp is reversed by SSP pretreatment. Finally, SSP pretreatment also markedly potentiates the capacity of PGE2 itself to increase Lp. We conclude that PGE2 releases Ca from intracellular stores and, by activating PKC, inhibits AVP-induced osmotic water flow. This suggests an important role for PI hydrolysis in mediating PGE2's effects on the CCD.

Publisher

American Physiological Society

Subject

Physiology

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3