Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule

Author:

Wang W. H.1,Schwab A.1,Giebisch G.1

Affiliation:

1. Department of Cellular and Molecular Physiology, Yale UniversityMedical School, New Haven, Connecticut 06510.

Abstract

We used the patch-clamp technique to study the activity and regulation of single potassium channels in the apical membrane of isolated cortical collecting tubules (CCT) of rat kidney. With 140 mM K+ in the pipette the inward conductance of the channel in cell-attached patches at 37 degrees C was 35 pS (n = 106, NaCl-Ringer or 70 mM KCl and 70 mM NaCl in the bath), and the outward conductance was 15 pS (n = 15, 70 mM NaCl + 70 mM KCl in the bath). Mean open probability (Po) of the channel is voltage independent and 0.96 (n = 106). The channel displayed one open state with a mean lifetime of 18.6 ms and one closed state with a mean lifetime of 0.7 ms (n = 20). Selectivity ratio between K+ and Na+ is 20 (n = 5). High-potassium diet increased channel incidence from control 32% (53 patches with channel from 165 patches) to 64% (53 patches with channels from 83 patches). The channel could be blocked by 1 mM Ba2+ (n = 7, Ba2+ in the pipette); however, 5 mM tetraethylammonium (n = 9, TEA in the pipette) did not block the channel activity. The channel was very sensitive to intracellular pH (n = 6). Changing bath pH facing cytoplasmic side of inside-out patches from 7.4 to 6.9 reversibly reduced Po from 0.9 to 0.1. Addition of 1 mM ATP (n = 7) to bath almost completely inhibited channel activity in inside-out patches. This ATP-induced inhibition was fully reversible and was found to be dependent on the ratio of ATP to ADP, since adding 0.5 mM ADP to bath solution relieved the ATP-induced blockade. Results indicate that intracellular pH, concentration of ATP, and ratio of ATP to ADP are important regulators of potassium channel activity in the apical membrane of rat CCT, and the properties of the channel make it a strong candidate for K+ secretion in this nephron segment.

Publisher

American Physiological Society

Subject

Physiology

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kaliuresis and Intracellular Uptake of Potassium with Potassium Citrate and Potassium Chloride Supplements;Clinical Journal of the American Society of Nephrology;2023-06-29

2. Directing two-way traffic in the kidney: A tale of two ions;Journal of General Physiology;2022-09-01

3. A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia;American Journal of Physiology-Renal Physiology;2022-02-01

4. ROMK channels are inhibited in the aldosterone-sensitive distal nephron of renal tubule Nedd4-2-deficient mice;American Journal of Physiology-Renal Physiology;2022-01-01

5. Evolving concepts of TRPV4 in controlling flow-sensitivity of the renal nephron;Role of TRPV4 Channels in Different Organ Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3