Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity

Author:

Coimbra T. M.1,Cieslinski D. A.1,Humes H. D.1

Affiliation:

1. Department of Internal Medicine, Veterans Administration MedicalCenter, Ann Arbor, Michigan.

Abstract

Repair and recovery of ischemic or nephrotoxic acute renal failure (ARF) are dependent upon renal tubule cell regeneration. Because epidermal growth factor (EGF) is a potent growth promoter to renal tubule cells, experiments were undertaken to assess the effects of exogenous administration of EGF during the recovery phase of HgCl2-induced ARF. Rats were administered HgCl2 (5 mg/kg sc), and [3H]thymidine incorporation into renal tissue and blood urea nitrogen (BUN) and serum creatinine concentrations were measured at various times after toxin administration. EGF (20 microgram) was administered subcutaneously 2 or 4 h after HgCl2 injection. Exogenous EGF resulted in greater levels of renal [3H]thymidine incorporation into renal proximal tubule cells compared with those observed in nontreated animals at several time points in the first 48 h after toxic injury. Morphometric analysis of histoautoradiograph sections of renal tissue demonstrated that greater than 96% of labeled cells were tubular in all examined sections. This EGF-related acceleration in DNA synthesis was associated with significantly lower peak BUN and serum creatinine levels, averaging 213 +/- 23 and 6.54 +/- 0.72 (SE) mg/dl, respectively, at 3 days in EGF-treated nephrotoxic rats compared with peak levels of 359 +/- 40 and 9.92 +/- 1.67 mg/dl (P less than 0.001, n = 7-16) at 5 days in non-EGF-treated nephrotoxic rats. EGF treatment also was associated with a return to near normal BUN and serum creatinine levels approximately 4 days earlier than that observed in non-EGF-treated animals. These findings demonstrate that exogenous EGF accelerates the repair process of the kidney after a severe toxic insult.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3