Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and calcitriol

Author:

Lopez-Hilker S.1,Dusso A. S.1,Rapp N. S.1,Martin K. J.1,Slatopolsky E.1

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St.Louis, Missouri 63110.

Abstract

Phosphorus is a well-known modulator of renal 1 alpha-hydroxylase activity. In early and moderate renal failure it is proposed that dietary Pi reduction ameliorates secondary hyperparathyroidism through increased circulating levels of calcitriol (i.e, 1 alpha, 25-dihydroxycholecalciferol). To gain further insight into the mechanisms by which a low-Pi diet ameliorates secondary hyperparathyroidism in advanced renal insufficiency, studies were performed in five dogs before and 6 mo after the induction of uremia by 5/6 nephrectomy. Glomerular filtration rate decreased from 69.0 +/- 2.3 to 10.5 +/- 0.5 ml/min, immunoreactive parathyroid hormone (irPTH) increased from 66.0 +/- 8.8 to 321.0 +/- 46 pg/ml, and calcitriol decreased from 39.0 +/- 10.4 to 27.0 +/- 6.2 pg/ml. Thereafter, dietary Pi was decreased gradually every 2 wk from 0.95% to 0.6, 0.45, and 0.3%, respectively. Dietary Ca was reduced from 1.6 to 0.6% to prevent development of hypercalcemia. Ionized Ca (ICa) decreased from 5.4 +/- 0.04 to 5.2 +/- 0.05 mg/dl (P less than 0.02), and plasma Pi decreased from 6.3 +/- 0.7 to 4.7 +/- 0.2 mg/dl (P less than 0.05). Calcitriol remained low (23.3 +/- 4.7 pg/ml). However, irPTH gradually decreased from 321.0 +/- 46.0 to 94.7 +/- 22.9 pg/ml (P less than 0.005). These studies indicate that a decrease in dietary Pi from 0.95 to 0.3% suppressed irPTH by approximately 70%. Reduction of irPTH was observed in the absence of a concomitant increase in levels of ICa or calcitriol. These studies suggest that reduction in dietary Pi in advanced renal insufficiency improves secondary hyperparathyroidism by a mechanism that is independent of the levels of calcitriol or plasma ICa.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3