Kinins inhibit conductive Na+ uptake by rabbit inner medullary collecting duct cells

Author:

Zeidel M. L.1,Jabs K.1,Kikeri D.1,Silva P.1

Affiliation:

1. Department of Medicine, Veterans Administration Hospital, West Roxbury 02132.

Abstract

Kinins promote natriuresis in vivo, at least in part by altering Na+ transport in the collecting duct. Using freshly prepared suspensions of rabbit inner medullary collecting duct (IMCD) cells, we have examined the effects of kinins on Na+ transport using measurements of oxygen consumption (QO2) and isotopic Na+ uptake. Bradykinin (BK) inhibited IMCD cell QO2 by 24.7 +/- 0.9% without significantly reducing QO2 in cells derived from the outer medullary collecting duct. BK and kallidin half-maximally inhibited QO2 at concentrations in the 10(-12)-10-(-11) M range; beta 1-receptor agonists did not alter QO2, and beta 1-receptor antagonism did not reduce the effect of kinins. These observations indicate that the actions of kinins on IMCD cells are mediated by beta 2-receptors or a distinct subclass. Several observations indicate that kinins reduce QO2 by inhibiting Na+ entry: in the absence of Na+, BK did not reduce QO2; BK inhibition of QO2 was not additive with ouabain, amiloride, atrial natriuretic peptide (ANP), or 8-bromoguanosine 3',5'-cyclic monophosphate and was abolished in the presence of the cation ionophore amphotericin B. Measurements of isotopic Na+ uptake demonstrated that BK reduced the initial rate of Na+ entry by 58%; BK inhibited the amiloride-sensitive component of conductive Na+ uptake. Because ANP inhibits conductive Na+ entry in IMCD cells via stimulation of cGMP accumulation, the effect of BK on cGMP levels was determined. Unlike ANP, BK did not increase cGMP levels, indicating that transport effects of kinins in IMCD are not mediated by cGMP. Thus kinins directly inhibit conductive Na+ entry in IMCD cells at concentrations suggestive of a physiological effect.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3