Affiliation:
1. Department of Medicine, Veterans Administration Hospital, West Roxbury 02132.
Abstract
Kinins promote natriuresis in vivo, at least in part by altering Na+ transport in the collecting duct. Using freshly prepared suspensions of rabbit inner medullary collecting duct (IMCD) cells, we have examined the effects of kinins on Na+ transport using measurements of oxygen consumption (QO2) and isotopic Na+ uptake. Bradykinin (BK) inhibited IMCD cell QO2 by 24.7 +/- 0.9% without significantly reducing QO2 in cells derived from the outer medullary collecting duct. BK and kallidin half-maximally inhibited QO2 at concentrations in the 10(-12)-10-(-11) M range; beta 1-receptor agonists did not alter QO2, and beta 1-receptor antagonism did not reduce the effect of kinins. These observations indicate that the actions of kinins on IMCD cells are mediated by beta 2-receptors or a distinct subclass. Several observations indicate that kinins reduce QO2 by inhibiting Na+ entry: in the absence of Na+, BK did not reduce QO2; BK inhibition of QO2 was not additive with ouabain, amiloride, atrial natriuretic peptide (ANP), or 8-bromoguanosine 3',5'-cyclic monophosphate and was abolished in the presence of the cation ionophore amphotericin B. Measurements of isotopic Na+ uptake demonstrated that BK reduced the initial rate of Na+ entry by 58%; BK inhibited the amiloride-sensitive component of conductive Na+ uptake. Because ANP inhibits conductive Na+ entry in IMCD cells via stimulation of cGMP accumulation, the effect of BK on cGMP levels was determined. Unlike ANP, BK did not increase cGMP levels, indicating that transport effects of kinins in IMCD are not mediated by cGMP. Thus kinins directly inhibit conductive Na+ entry in IMCD cells at concentrations suggestive of a physiological effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献