Leukotrienes stimulate neutrophil adhesion to mesangial cells: modulation with lipoxins

Author:

Brady H. R.1,Persson U.1,Ballermann B. J.1,Brenner B. M.1,Serhan C. N.1

Affiliation:

1. Department of Medicine, Brigham and Women's Hospital, Harvard MedicalSchool, Boston, Massachusetts 02115.

Abstract

We have examined polymorphonuclear neutrophil (PMN) adhesion to mesangial cells (MC) in vitro and have assessed the actions of lipoxygenase (LO) products in this process. On exposure to either leukotriene B4 (LTB4), or leukotriene D4 (LTD4), 111In-labeled PMNs adhere to monolayers of cultured MC. These actions were rapid in onset (less than 5 min) and dependent upon leukotriene concentration (10(-9) to 10(-6) M) and the presence of divalent cations. Adhesion was sustained (0-30 min), and neither LTB4 nor LTD4 was metabolized to inactive products during PMN-MC interaction, as determined by their recovery after reverse-phase high-performance liquid chromatography. LTB4 was a PMN-directed stimulus, whereas LTD4 appeared to act on MC. A monoclonal antibody (TS 1/18) against the CD18 component of the PMN CD18/CD11 adhesion complex inhibited the LTB4-induced response, indicating involvement of this PMN glycoprotein in the adhesion process. In contrast, this antibody did not affect LTD4-induced adhesion, suggesting that this response was mediated by other adhesion epitopes. When added alone, neither lipoxin A4 (LXA4) nor lipoxin B4 (LXB4) provoked PMN adhesion to MC. In contrast, LXA4 and LXB4 at equimolar concentrations attenuated the LTD4- but not LTB4-induced response. Together, these results provide further evidence that LO-derived eicosanoids may constitute important early signals that regulate PMN-MC interaction in glomerular inflammation.

Publisher

American Physiological Society

Subject

Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3