Bladder urothelial BK channel activity is a critical mediator for innate immune response in urinary tract infection pathogenesis

Author:

Yeh Judy1,Lu Ming2,Alvarez-Lugo Lery2,Chai Toby C.12

Affiliation:

1. Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut

2. Department of Urology, Yale University School of Medicine, New Haven, Connecticut

Abstract

The open probability of calcium-activated voltage-gated potassium channel (BK channel) on bladder umbrella urothelial cells is increased by lipopolysaccharide (LPS). It is hypothesized that this channel’s activity is important in the urothelial innate immune response during urinary tract infection (UTI). We performed in vivo studies using female C57BL/6 mice whose bladders were inoculated with LPS (150 μl of 1 mg/ml) or uropathogenic Escherichia coli (UPEC, UTI89), without and with intravesical BK inhibitor iberiotoxin (IBTX, 1 μM). Inflammatory biomarkers (chemokines and cytokines) were measured in urine specimens collected 2 h after inoculation using a 32-multiplex ELISA. Of these 32 biomarkers, 19 and 15 were significantly elevated 2 h after LPS and UPEC exposure, respectively. IBTX significantly abrogated the elevations of 15 out of 19 biomarkers after LPS inoculation and 12 out of 15 biomarkers after UPEC inoculation. In a separate experiment, qPCR for IL-6, interferon-γ-induced protein 10 (CXCL10), and macrophage inflammatory protein 2 (CXCL2) in urothelium paralleled the changes measured in urine of these same biomarkers, supporting that urinary changes in biomarker levels reflected urothelial expression changes. These in vivo data demonstrated that BK channel activity is crucial in the urothelial host innate immune response, as measured by changes in urinary biomarkers, in UTI pathogenesis.

Publisher

American Physiological Society

Subject

Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BK channels in microglia;Brain Science Advances;2023-02-27

2. Neuroanatomy and Neurophysiology;Female Genitourinary and Pelvic Floor Reconstruction;2023

3. Bladder cancer, inflammageing and microbiomes;Nature Reviews Urology;2022-07-07

4. Neuroanatomy and Neurophysiology;Female Genitourinary and Pelvic Floor Reconstruction;2022

5. The nitric oxide‐cyclic guanosine monophosphate pathway inhibits the bladder ATP release in response to a physiological or pathological stimulus;Physiological Reports;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3