Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback

Author:

Liu Zhi Zhao1,Schmerbach Kristin1,Lu Yuan2,Perlewitz Andrea1,Nikitina Tatiana1,Cantow Kathleen1,Seeliger Erdmann1,Persson Pontus B.1,Patzak Andreas1,Liu Ruisheng2,Sendeski Mauricio M.1

Affiliation:

1. Institut für Vegetative Physiologie, Charité, Universitätsmedizin Berlin, Berlin, Germany; and

2. Department of Physiology and Biophysics, Division of Nephrology, University of Mississippi Medical Center, Jackson, Mississippi

Abstract

Iodinated contrast media (CM) have adverse effects that may result in contrast-induced acute kidney injury. Oxidative stress is believed to play a role in CM-induced kidney injury. We test the hypothesis that oxidative stress and reduced nitric oxide in tubules are consequences of CM-induced direct cell damage and that increased local oxidative stress may increase tubuloglomerular feedback. Rat thick ascending limbs (TAL) were isolated and perfused. Superoxide and nitric oxide were quantified using fluorescence techniques. Cell death rate was estimated using propidium iodide and trypan blue. The function of macula densa and tubuloglomerular feedback responsiveness were measured in isolated, perfused juxtaglomerular apparatuses (JGA) of rabbits. The expression of genes related to oxidative stress and the activity of superoxide dismutase (SOD) were investigated in the renal medulla of rats that received CM. CM increased superoxide concentration and reduced nitric oxide bioavailability in TAL. Propidium iodide fluorescence and trypan blue uptake increased more in CM-perfused TAL than in controls, indicating increased rate of cell death. There were no marked acute changes in the expression of genes related to oxidative stress in medullary segments of Henle's loop. SOD activity did not differ between CM and control groups. The tubuloglomerular feedback in isolated JGA was increased by CM. Tubular cell damage and accompanying oxidative stress in our model are consequences of CM-induced direct cell damage, which also modifies the tubulovascular interaction at the macula densa, and may therefore contribute to disturbances of renal perfusion and filtration.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3