Effects of intravesical prostaglandin E2 on bladder function are preserved in capsaicin-desensitized rats

Author:

Hokanson James A.1ORCID,Langdale Christopher L.1ORCID,Milliken Philip H.2,Sridhar Arun2,Grill Warren M.1345ORCID

Affiliation:

1. Department of Biomedical Engineering, Duke University, Durham, North Carolina

2. Galvani Bioelectronics, Stevenage, United Kingdom

3. Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina

4. Department of Neurobiology, Duke University, Durham, North Carolina

5. Department of Neurosurgery, Duke University, Durham, North Carolina

Abstract

Prostaglandin E2 (PGE2) instilled into the bladder generates symptoms of urinary urgency in healthy women and reduces bladder capacity and urethral pressure in both humans and female rats. Systemic capsaicin desensitization, which causes degeneration of C-fibers, prevented PGE2-mediated reductions in bladder capacity, suggesting that PGE2 acts as an irritant (Maggi CA, Giuliani S, Conte B, Furio M, Santicioli P, Meli P, Gragnani L, Meli A. Eur J Pharmacol 145: 105–112, 1988). In the present study, we instilled PGE2 in female rats after capsaicin desensitization but without the hypogastric nerve transection that was conducted in the Maggi et al. study. One week after capsaicin injection (125 mg/kg sc), rats underwent cystometric and urethral perfusion testing under urethane anesthesia with saline and 100 µM PGE2. Similar to naïve rats, capsaicin-desensitized rats exhibited a reduction in bladder capacity from 1.23 ± 0.08 mL to 0.70 ± 0.10 mL ( P = 0.002, n = 9), a reduction in urethral perfusion pressure from 19.3 ± 2.1 cmH2O to 10.9 ± 1.2 cmH2O ( P = 0.004, n = 9), and a reduction in bladder compliance from 0.13 ± 0.020 mL/cmH2O to 0.090 ± 0.014 mL/cmH2O ( P = 0.011, n = 9). Thus, changes in bladder function following the instillation of PGE2 were not dependent on capsaicin-sensitive pathways. Further, these results suggest that urethral relaxation/weakness and/or increased detrusor pressure as a result of decreased compliance may contribute to urinary urgency and highlight potential targets for new therapies for overactive bladder.

Funder

NIDDK

Galvani Bioelectronics

Publisher

American Physiological Society

Subject

Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3