A dual blocker of endothelin A/B receptors mitigates hypertension but not renal dysfunction in a rat model of chronic kidney disease and sleep apnea

Author:

Morales-Loredo Humberto1,Jones David1,Barrera Adelaeda1,Mendiola Perenkita J.1,Garcia Joshua1,Pace Carolyn1,Murphy Minerva1,Kanagy Nancy L.1,Gonzalez Bosc Laura V.1

Affiliation:

1. Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico

Abstract

Obstructive sleep apnea is characterized by recurrent episodes of pharyngeal collapse during sleep, resulting in intermittent hypoxia (IH), and is associated with a high incidence of hypertension and accelerated renal failure. In rodents, endothelin (ET)-1 contributes to IH-induced hypertension, and ET-1 levels inversely correlate with glomerular filtration rate in patients with end-stage chronic kidney disease (CKD). Therefore, we hypothesized that a dual ET receptor antagonist, macitentan (Actelion Pharmaceuticals), will attenuate and reverse hypertension and renal dysfunction in a rat model of combined IH and CKD. Male Sprague-Dawley rats received one of three diets (control, 0.2% adenine, and 0.2% adenine + 30 mg·kg−1·day−1macitentan) for 2 wk followed by 2 wk of recovery diet. Rats were then exposed for 4 wk to air or IH (20 short exposures/h to 5% O2-5% CO27 h/day during sleep). Macitentan prevented the increases in mean arterial blood pressure caused by CKD, IH, and the combination of CKD + IH. However, macitentan did not improve kidney function, fibrosis, and inflammation. After CKD was established, rats were exposed to air or IH for 2 wk, and macitentan feeding continued for 2 more wk. Macitentan reversed the hypertension in IH, CKD, and CKD + IH groups without improving renal function. Our data suggest that macitentan could be an effective antihypertensive in patients with CKD and irreversible kidney damage as a way to protect the heart, brain, and eyes from elevated arterial pressure, but it does not reverse toxin-induced tubule atrophy.

Funder

Actelion Pharmaceuticals

Publisher

American Physiological Society

Subject

Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3