Resistance to oxidative stress by chronic infusion of angiotensin II in mouse kidney is not mediated by the AT2receptor

Author:

Wesseling Sebastiaan,Ishola David A.,Joles Jaap A.,Bluyssen Hans A.,Koomans Hein A.,Braam Branko

Abstract

Wild-type mice are resistant to ANG II-induced renal injury and hence form an attractive model to study renal defense against ANG II. The present study tested whether ANG II induces expression of antioxidative genes via the AT2receptor in renal cortex and thereby counteracts prooxidative forces. ANG II was infused in female C57BL/6J mice for 28 days and a subgroup received AT2receptor antagonist (PD-123,319) for the last 3 days. ANG II induced hypertension and aortic hypertrophy; proteinuria and renal injury were absent. Urinary nitric oxide metabolites (NOx) were decreased, and lipid peroxide (TBARS) excretion remained unchanged. Expression of NADPH oxidase components was decreased in renal cortex but induced in aorta. Heme oxygenase-1 (HO-1) was induced in both renal cortex and aorta. In contrast, ANG II suggestively increased AT2receptor expression in kidney but not in aorta. AT2receptor blockade enhanced hypertension in ANG II-infused mice, reversed ANG II effects on NOxexcretion, but did not affect TBARS. Despite its prohypertensive effect, expression of prooxidative genes in the renal cortex decreased rather than increased after short-term AT2receptor blockade and renal HO-1 induction after ANG II was normalized. Thus chronic ANG II infusion in mice induces hypertension but not oxidative stress. In contrast to the response in aorta, gene expression of components of NADPH-oxidase was not enhanced in renal cortex. Although ANG II administration induced renal cortical AT2receptor expression, blockade of that receptor did not unveil the AT2receptor as intrarenal dampening factor of prooxidative forces.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3